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ABSTRACT 
URSIN, B. and ARNTSEN, B. 1985, Computation of Zero-Offset Vertical Seismic Profiles includ- 
ing Geometrical Spreading and Absorption, Geophysical Prospecting 33,72-96. 

Synthetic vertical seismic profiles (VSP) provide a useful tool in the interpretation of 
VSP data, allowing the interpreter to analyze the propagation of seismic waves in the differ- 
ent layers. A zero-offset VSP modeling program can also be used as part of an inversion 
program for estimating the parameters in a layered model of the subsurface. 

Proposed methods for computing synthetic VSP are mostly based on plane waves in a 
horizontally layered elastic or anelastic medium. In order to compare these synthetic VSP 
with real data a common method is to scale the data with the spherical spreading factor of 
the primary reflections. This will in most cases lead to artificial enhancement of multiple 
reflections. 

We apply the ray series method to the equations of motion for a linear viscoelastic 
medium after having done a Fourier transformation with respect to the time variable. This 
results in a complex eikonal equation which, in general, appears to be difficult to solve. For 
vertically traveling waves in a horizontally layered viscoelastic medium the solution is easily 
found to be the integral along the ray of the inverse of the complex propagation velocity. The 
spherical spreading due to a point source is also complex, and it is equal to the integral along 
the ray of the complex propagation velocity. 

Synthetic data examples illustrate the differences between spherical, cylindrical, and 
plane waves in elastic and viscoelastic layered media. 

INTRODUCTION 

The computation of synthetic seismograms has proven to be an invaluable tool in 
correlating well log data with seismic data. The classical methods (Baranov and 
Kunetz 1960, Wuenschel 1960) are based on plane-wave propagation in a perfectly 
elastic horizontally layered medium. As shown by Trorey (1962), the effect of anelas- 
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tic absorption significantly changes the amplitudes and frequency content of the 
synthetic seismogram. Nielsen (1978) used a one-dimensional equation of motion for 
an anelastic medium to calculate synthetic seismograms for a source emitting plane 
waves. Ganley (1981) has done a similar calculation which includes the effect of 
absorption and dispersion of the seismic waves. Kennett (1979) used a two- 
dimensional Fourier-transform technique to compute synthetic seismograms for a 
line source. The phase-velocities used by Kennett are not frequency-dependent, 
though it can be shown that the principle of causality requires that wave propaga- 
tion in absorptive media is dispersive (Aki and Richards 1980). 

The extension of these classical methods to the computation of synthetic vertical 
seismic profiles (VSP) is straightforward (Wyatt 1981). Synthetic vertical seismic 
profiles provide a useful tool in interpretation of VSP data since they allow the 
interpreter to analyze the propagation of seismic waves in different layers and to 
study the effects of primary and multiple reflections (Balch, Lee, Miller and Ryder 
1982). Proposed techniques for computing synthetic VSP are plane waves in an 
elastic medium with constant two-way traveltime in each layer (Wyatt 1981) and 
plane waves in an anelastic layered medium with homogeneous layers (Kan, Corri- 
gan and Huddleston 1981). The last mentioned method is based on a recursive 
technique for solving the one-dimensional wave equation in the frequency domain. 

In most practical cases the source is a point source, and the effect of geometrical 
spreading has to be taken into account. In order to compare the synthetic seismo- 
grams computed for a plane-wave source with real data, it is common to scale the 
data with the geometrical spreading factor computed for primary reflections. This 
procedure leads in many cases to artificial enhancement of the multiple reflections. 
In order to include both anelasticity and geometrical spreading in the calculation of 
synthetic seismograms, an equation of motion and an appropriate solution are 
needed. We shall use the equations of motion for a viscoelastic medium (Ben- 
Menahem and Singh 1981) and, after a Fourier transformation with respect to the 
time variable, we shall apply the ray-series method (Cervenjr and Hron 1980). A 
different approach based on the ray-series method has been used by Buchen (1974). 
In appendix A we show that our approach results in a complex eikonal equation 
which apparently is difficult to solve for a general inhomogeneous medium. For 
vertically traveling waves in a horizontally layered viscoelastic medium a solution 
can be found (see appendix B). The solution of the complex eikonal equation is 
obtained by integrating the inverse of the complex velocity along the ray. By com- 
puting the amplitudes corresponding to a point source, it is seen that the geometri- 
cal spreading factor now is complex, and it is equal to the integral of the complex 
velocity along the ray. This extends a well-known result derived by Newman (1973) 
for a horizontally layered elastic medium. The amplitudes of waves generated by a 
line source can be computed by using the square root of the geometrical spreading 
factor for spherical waves. For plane waves there is, of course, no geometrical 
spreading. 

In appendix C we apply the usual boundary conditions at an interface between 
two inhomogeneous viscoelastic media to derive the transmission and reflection 
coefficients for spherical, cylindrical, and plane waves. We also derive a frequency- 
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independent approximation of the reflection and transmission coefficients. In appen- 
dix D we discuss our choice of complex propagation velocity (Aki and Richards 
1980). 

The results are summarized in the main text where we also give an approx- 
imative method for computing synthetic VSP which is computationally efficient. 
The ray generation algorithm is similar to the ones used by Hron (1972) and Vetter 
(1981). 

The difference between spherical, cylindrical, and plane waves, and between 
elastic and viscoelastic media is illustrated with synthetic data examples. 

ZERO-OFFSET RAY SERIES FOR A LAYERED 
VISCOELASTIC M E D I U M  

We consider a horizontally stratified viscoelastic medium consisting of N layers 
bounded by two half-spaces. The layers are numbered from 0 to N + 1, where layer 
number 0 and N + 1 are the half-spaces at the top and bottom of the medium. We 
define a coordinate system with the z-axis vertically downwards. The coordinate of 
interface number k at the bottom of layer number k is z k ,  and we choose z,, = 0. 

An approximate solution of the equations of motion can be found by expanding 
the displacement or displacement velocity in a ray series as shown in appendix A. 
This results in a complex eikonal equation which is, in general, difficult to solve. For 
vertically traveling waves a simple solution can be found. In appendix B it is shown 
that the displacement can be expressed as a sum of terms corresponding to all 
primary and multiple reflected waves. We consider a source at z = z,, where the 
displacement velocity is given. Unless z, = 0, both upgoing and downgoing waves 
are generated by the source. We let the displacement velocity be positive along the 
direction of the ray so that the upgoing and downgoing wave have the same polarity 
for explosive sources. We let s denote arclength along the ray with s = 0 at the 
source. The receiver is at z, located in an arbitrary layer (but at the same lateral 
position as the source). At the receiver we compute the displacement velocity in the 
z-direction which is positive for a downgoing wave and negative for an upgoing 
wave. Combining the results from appendix B and C we obtain the displacement 
velocity as a sum of terms of the form 

where z j+  is the coordinate at the top of layer number j + 1 and z ~ + ~ -  is the 
coordinate at the bottom of layer number j + 1, p(z) is the density, and 

I 
1 + -  

2Q 
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is the complex propagation velocity (see appendix D). The product over j in (1) is to 
be taken over all layers passed by the ray starting at the source, z l +  = z , ,  and 
ending at the receiver, z ~ + ~ -  = z , .  The factors introduced when passing a layer 
both upwards and downwards cancel, and the product contains only terms due to 
the layers between the source and receiver. This product is therefore independent of 
the type of wave, and it can be taken out of the summation and computed only 
once. Furthermore, the factors due to homogeneous layers are equal to one. V,(W) is 
the source displacement velocity at s = 1 m, but with the delay due to the 1 m 
separation removed. F(s, CO) is a factor which takes the geometrical spreading into 
account. We have 

with 

n(s, W )  = A(o, W )  do l 
and 

[ 1 for a point source, 

(4) 

k = 3 for a line source, ( 5 )  r 0 for a plane source. 

The phase function z(s, W )  is the solution of the complex eikonal equation. It is given 
by 

The products of R,(w) and q(o) contain all reflection and transmission coeffi- 
cients which take into account the boundary conditions at the interfaces between 
the different layers. In appendix C it is shown that the transmission coefficient is 

T(o) = 1 - R(W) (7) 

and, for a downward traveling wave incident at zk , the reflection coefficient is 

G ( z k +  5 W, - G ( z k -  9 R(w) = 
G(zk+,  W )  -k G(zk- 5 0)’ 

where 

ion(s, W )  
G(z, W )  = p(z)A(z, W )  (9) 

with k defined in (5) and n(s, CO) given in (4). The second term in (9) is a near-field 
term (Berkhout 1982, p. 93) which will not be included in the approximate computa- 
tions discussed below. 
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In the computations we shall assume that the reference velocity at CO,, C,  in (2)  is 
a linear function of depth in each layer: 

crk(z) = ck + gkZ - z k -  1) (10) 

for I z 5 zk- . c k  is the velocity at the top of layer number k,  and gk is the 
velocity gradient in the layer. With this velocity function we can now integrate the 
functions n(s) and z(s) over layer number k to obtain the contribution to the sums in 
(4) and (6) due to the passage of the wave through this layer. We obtain 

zk 

Ank = ik A(o) do 

where Dk = z k  - z k - 1  is the thickness of layer number k,  and Qk is constant in the 
layer. We also obtain 

where 

if g k  = 0, 

h k  = 

j $ l o g ( l + y )  ifg,#O. 

In some cases the source generates a pressure pulse P,,(co), or the receiver records 
pressure. To convert from pressure to displacement velocity or vice versa, we shall 
use the relation (see appendix C )  

S3,(w) = kpAio  1 - k - U 3 ( 0 ) ,  ( i t n )  

where S , ,  is the Fourier transform of the stress o,, and U ,  is the Fourier transform 
of the vertical displacement. The factor k depends on the type of source and is given 
in (5). In (14) the plus sign is used for downward traveling waves and the minus sign 
for upward traveling waves. With the same sign convention we have that in (1) 
V = f V, ,  and we also have V, = - ioU,  and P = -S3, .  Thus, (14) gives 

In the computations we always use the far-field approximation P = p A V .  
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A P P R O X I M A T E  COMPUTATION OF T H E  R A Y  SERIES 
In the preceding section we have given an exact representation of the ray series in a 
layered viscoelastic medium. The complex functions n(o, w)  and z(o, w)  must be 
computed for all frequencies in the frequency band of the input signal, and the 
reflection and transmission coefficients must also be computed for each frequency. 
Since this must be done for each ray, and the number of rays is large, the exact 
computations are very expensive in terms of computer time. In order to speed up 
the computations we have made certain approximations. 

The reflection coefficients are approximated by (see appendix C )  

where now 

I 

1 + -  
2Q 

is frequency-independent. This approximation is also used when the transmission 
coefficient in (7) is computed. 

In the computation of n(s, w) and z(s, w)  we use the approximations 

and 

h k  is defined in (13), and the average value of Q is given by 

- 
Qav Dk * 

k 



78 B .  U R S I N  AND B.  ARNTSEN 

L 

In (18)-(20) all sums over k are extended over all layers passed by the ray (that is, a 
given layer may be included several times for a multiple reflection). 

When the variation in Q in the model is not too large, these simplifications give 
acceptable results. In the next section the errors have been computed for a simple 
model. We refer to this approximation as the " average attenuation approximation ". 

NUMERICAL RESULTS 
In this section we present synthetic seismograms computed for simple models 
demonstrating the effects of geometrical spreading and absorption. The total wave- 
field (displacement velocity or pressure) is obtained as an infinite sum of rays, each 
contributing an amount given by (1). For practical calculations the number of rays 
must be limited to a finite number. One way of doing this is to group the rays 
according to the number of reflections they have gone through (Vetter 1981), and 
then carry out the calculations until all rays with a certain reflection order (i.e., all 
rays with a certain number of reflections) have been included. In the following 
numerical examples all rays with one to five reflections have been included. The 
examples showing single traces have been computed with an airgun source and 
recorded with a hydrophone, both located 1.5 m below the surface. 

0 .0 ! .0 2.0 

T I ME I N  SECONDS 

3.0 4 .o 

Fig. 1. Seismograms computed for the model defined in table 1, assuming a perfectly elastic 
medium. 
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Table 1. Parameters for the model used for the computation of 
seismograms with different sources. 

Velocity Dimensions Density 
Layer no. (m/s) (m) Q-value (g/cm3) 

- 0 0.0 10 000.0 0.0 
1 1500.0 225.0 10 000.0 1.09 
2 1615.0 419.0 50.0 1.46 
3 2050.0 300.0 100.0 1.86 
4 1950.0 750.0 100.0 1.77 
5 2160.0 600.0 100.0 1.90 
6 3050.0 350.0 200.0 2.20 
7 3165.0 250.0 200.0 2.25 
8 5350.0 260.0 200.0 2.57 
9 3600.0 350.0 200.0 2.35 

10 4770.0 200.0 2.47 - 

Figure 1 shows different seismograms computed for the model defined in table 1, 
but the layers are assumed to be perfectly elastic. This corresponds to infinite Q in 
each layer. In order to compare the response for different sources, the seismograms 
have been scaled with the inverse of the geometrical spreading factor of the primary 
reflections by multiplying with the function 

O l t l t ,  

1 1, t 2 t ,  

where F k  is the geometrical spreading factor defined in equation (3) for the primary 
reflection number k arriving at time t k .  We note that ' ( t )  = 1 for a plane-wave 
source. In fig. 1 the top response is for a plane-wave source, the middle response is 
for a line source, and the bottom response is for a point source. The scaling of the 
responses has partly compensated for the geometrical spreading for point and line 
sources, so that these scaled responses are approximately equal to the plane-wave 
response, but the multiple reflections have not been properly scaled as indicated by 
the arrows. This is shown more clearly in fig. 2, where the difference between the 
plane- and the point-source responses are plotted at the top, the difference between 
the plane- and the line-source responses is plotted in the middle, and the difference 
between the line- and the point-source responses is plotted at the bottom. We note 
that due to the linear interpolation in (21) and the finite pulse length, the primary 
reflections have also been improperly scaled. 

Figure 3 shows various responses computed for the model defined in table 2. All 
responses have been computed for a point source and then scaled according to (21). 
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Fig. 2. Differences between the seismograms shown in fig. 1. 

The response plotted at the top is the response of a perfectly elastic medium, and the 
next response is the complete anelastic response computed according to (1). We see 
that the effect of anelastic attenuation is to reduce the amplitudes of the reflected 
pulses significantly. The next response has also been computed for an anelastic 
medium, but now the plane-wave reflection coefficients have been used ( k  = 0 in (9)). 
The difference between the exact anelastic response and this response has been 
plotted at the bottom of fig. 4. We see that using the plane-wave reflection and 

Table 2. Parameters for the simplified model used for the compari- 
son of calculation methods. 

Velocity Dimensions Density 
Layer no. (m/s) (m) Q-values (g/cm3) 

0 0.0 - 10 000.0 0.0 
1 1500.0 225.0 10 000.0 1.09 
2 1615.0 419.0 ,. 50.0 1.46 
3 2050.0 300.0 100.0 1.86 
4 2250.0 - 100.0 1.90 
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0.0  1 I .0 2 .o 

TIME I N  SECONDS 

Fig. 3. Seismograms computed for the model defined in table 2. 

transmission coefficients introduces very small errors in the seismogram computed 
for this model. 

At the bottom of fig. 3 we have plotted the approximate response computed with 
the frequency-independent reflection and transmission coefficients given in (16) and 
(17), and the average attenuation given in (18) to (20). The difference between this 
approximate response and the complete response is plotted at the top of fig. 4. We 
see that within the plotting scale, this is a useful approximation, and we expect this 
approximation to give good results when we compare synthetic responses with real 
data. 

The average attenuation approximation discussed above results in a large 
reduction in CPU-time needed to run the program on a computer. On a Norsk 
Data ND560 the complete anelastic response required 435 s, the response with 
plane-wave reflection and transmission coefficients required 254 s, and the average 
attenuation response required 28 s. 

In fig. 5 we have plotted the responses of the model defined in table 1, and now 
we have assumed that all layers are viscoelastic. The responses were computed for 
plane, line, and point sources and then corrected for geometrical spreading by 
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EXACT - AVERAGE (3: 

(EXACT - AVERAGE (31x10: 

” A ,  
V 

EXACT - PLANE R .C. : 

(EXACT - PLANE R . C . 1 ~ 4 0 0 :  

n 
V 

0 .o 1 .o 2.0 

TIME I N  SECONDS 

Fig. 4. Differences between the seismograms shown in fig. 3. 

multiplying with the scaling function defined in (21). Due to the effect of the anelas- 
tic attenuation, the amplitudes of the responses at times greater than about 2 s were 
below the plotting scale (see fig. 3). The responses plotted in fig. 5 have therefore 
also been exponentially scaled by multiplying with exp (tit,), where t is time in 
seconds. Keeping this scaling in mind the responses in fig. 5 can be compared with 
the corresponding responses in fig. 1 for an elastic medium. The anelastic attenu- 
ation significantly reduces the amplitudes of the late reflections, and since the high 
frequencies are most attenuated, the reflected pulses have a broader pulse-shape. 

Figure 6 shows the differences between the responses plotted in fig. 5. At the top 
the difference between the responses for a plane and a point source has been plotted. 
The response in the middle shows the difference between a plane and a line source, 
and at the bottom the difference between a line and a point source has been plotted. 
We see that the amplitudes of the multiple reflections differ for the different source 
types. 

In figs 7 and 8 we have plotted zero-offset VSP for the model given in table 3. 
The VSP responsLshown in fig. 7 is for a perfectly elastic medium, while the 
response shown in fig. 8 shows the effect of anelastic attenuation. For plotting 
purposes a time-variant, data-adaptive scaling has been used. Using a sliding time- 
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Fig. 5. Seismograms computed for the model defined in table 1, assuming all layers to be 
viscoelastic. 

window, the traces have been scaled so that the sum of the absolute values of the 
response within the window is constant. This means that the amplitude information 
in figs 7 and 8 is significantly reduced. We see that the effect of the anelastic 
attenuation is to reduce the high-frequency content of the response. 

CONCLUSION 
We have shown that realistic seismic responses should include the effect of geometri- 
cal spreading and anelastic attenuation. Further investigations are needed to find 
the exact form of the attenuation mechanism, and to estimate the unknown par- 
ameters in the equations. 
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. PLANE - POINT: 

PLANE - LINE:  : . 
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Fig. 6. Differences between the seismograms shown in fig. 5. 

Table 3. Parameters for the model used for the computation of 
zero-offset V S P .  

Layer no. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

~~ 

Velocity Dimensions Density 
(m/s) (m) Q-value (g/cm3) 

0.0 - 10 000.0 0.0 
1500.0 225.0 50.0 1.03 
1970.0 705.0 70.0 2.0 
2200.0 245.0 100.0 2.0 
2000.0 135.0 100.0 1.9 
2200.0 390.0 100.0 1.9 
2400.0 125.0 200.0 2.1 
2600.0 200.0 200.0 2.2 
2800.0 375.0 200.0 2.3 
3000.0 150.0 250.0 2.4 
3200.0 250.0 250.0 2.5 
3000.0 60.0 200.0 2.4 
3200.0 40.0 200.0 2.4 
3 100.0 130.0 200.0 2.5 
3200.0 - 250.0 2.6 
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Fig. 7. Zero-offset VSP for the model defined in table 3, assuming a perfectly elastic medium. 
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Fig. 8. Zero-offset VSP for the model defined in table 3, assuming all layers to be viscoelastic. 
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APPENDIX A 

THE RAY-SERIES METHOD APPLIED TO LINEAR 
VISCOELASTIC M E D I A  

We let x = (xl, x2 ,  x,) be a fixed coordinate system with the x,-axis positive 
downwards. We consider a linear viscoelastic medium with stress-strain relation 
(using the Einstein summation rule): 

biJ(X, t )  = 2 p  * Eij + 6,I * E,, , ('41) 
where oiJ(x, t )  is the stress tensor, 

1 i = j  

is the Kronecker symbol, and qj is the strain tensor defined by 

EiXX, t )  = $[U,, jtx, t )  + uj, i(x,  t)I, 

4x3 t )  = CuAx, t), u 2 ( x ,  t), 

where 

t)l 
is the particle displacement vector, and the partial derivatives are denoted by 

p and I are space-variant convolution operators of the type 

P(X, T)Eij(X, t - 7) dt 

('43) 

('45) 

corresponding to the Lame parameters. The equations of motion are 

P i ,  zt = bij ,  j 9 (A6) 

where p(x) is the density. From (Al) to (A6) we obtain 

P U i , t t  =(I + iu) * u j , i j  + P * u i ,  jj + * uj,j + p, j * (ui,  j + uj,i) ,  ('47) 

which are the general equations of motion for a linear viscoelastic medium of 
Boltzman type (Ben-Menahem and Singh 1981). 

We derive the ray series solution of (A7) using the approach of Cervenq and 
Hron (1980). The displacement vector is written in the form of a ray series : 

wheref,(t) are complex functions satisfyingf;(t) = dfJdt =fk- l(t), and such that the 
real and imaginary parts Off&) constitute Hilbert transorm pairs of functions. 
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We shall use the Fourier transform 

Ui(x, w)  = ui(x, t) exp (iwt) dt SP, 
to transform the ray series (A8) into 

m 

ui(x, w) = exp [iwz(x)] u{k’(X)Fk(w). 
k = O  

When we apply the Fourier transform to (A7) we obtain 

- p ~ ’ U i  = (A + M ) U ,  i j  + M U , ,  j j  + A, i U ,  j + M , J U i ,  j + U ,  i), (‘41 1) 

where the Fourier transforms of 1 and p are A and M ,  respectively. We use 
equation (A10) in (Al l )  and note that Fk-,(w) = -iwF,(w). By comparing equal 
powers of w we obtain the operator equation (Cervenjl and Hron 1980, equation 
( 14)) 

NU‘k’ - KU‘k-l’ + LU‘k-2’ = 0, k = 0, 1, ..., (A121 

with U ( - ’ )  = U ( - 2 )  = 0. The operators are (in component form): 

Ni U‘k’ = -pUlk’ + (A + M)Up’z , i z , j  + MUlk’z , j z , j ,  

Ki U‘k’ = (A + M)[UF)  T, + UF)j T, i j  + Upk, i j ]  

+ M[2U{k’jz, + Ujk)z, j j ]  

+ A, Up’z, + M ,  j[U{k’z,  + Up’z, i ] ,  

Li U(k’ = (A + M)UF’ij + 
+ A, UF)j + M ,  j[U{k’j + 

The first equation is NU‘’’ = 0 which gives the eikonal equations 

1 
A2 

z . z  . = -  .I . I  

and 
1 

7, j z ,  j = - 
B 2 ’  

where 

A + 2 M  
P 

A2 = ~ 

and 
M B2 = - 
P 

(A14.a) 

(A14.b) 

(A15.a) 

(A15.b) 

are the squared (complex) velocities for P- and S-waves, respectively. 
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The solution of the complex eikonal equation is not straightforward, except in 
the case of vertically traveling waves in a horizontally layered medium. This case is 
treated in appendix B. We note that the derivation in Cerveny and Hron (1980) can 
formally be followed until their (23), but that the equivalent of (24) is not generally 
true. 

APPENDIX B 

VERTICALLY TRAVELING WAVES I N  A HORIZONTALLY 
LAYERED VISCOELASTIC MEDIUM 

We consider vertically traveling P-waves in a horizontally layered viscoelastic 
medium. The ray direction is m = ‘r_ e,  , where e3 is a unit vector in the x,-direction 
(vertically downwards). In this case the complex eikonal equation (A14.a) has the 
solution 

(B1) 
1 

Vz = - . m, 
A 

which gives 

where s is the length of the ray path. We decompose the amplitude components into 
two vector components: 

033) U(W = u\t) + U(k) 
I? 

where 

u\t) = Uf)m (B4.a) 

and 

uy) = U(k)e sl 1 + U(k)e s2 2 .  (B4.b) 

We see that in this case equation (24) in Cerveny and Hron (1980) holds, and 
therefore their equations (26) and (27) can be used after suitable modifications. We 
must have 

= G ~ ’ ( s )  
d log pA2  

ds 

with 

where the operators K i  and Li are defined in (A13). 
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In order to compute the amplitude coefficients from equation (B5) we need to 
compute V2r = 7, ii. We shall use the Taylor expansion 

~(s, xi, ~ 2 )  = ~ ( s ,  0, 0) + qTMq, 037) 

where q = (xl, x#, and M is a complex symmetric 2 x 2 matrix. We have used the 
fact that 7, = 7, = 0 along the ray. This follows from the eikonal equation (Bl). 
Along the ray we have 

1 dA 
V% = -- - + tr M. 

A’ ds 

With our special interpretation of the coordinate system (s, q), the derivation from 
(50) to (63) in Cervenp and Hron (1980) is still valid, and we have 

dM 
ds 
- +  AM^ = 0. 

We want to solve for the zero-order amplitude coefficient U:) = U ,  and note that 
GLo)(s) = 0 so that (B5) becomes 

ds 
dU 1 
ds + - 2 U,( --i + A tr M + 

Changing variable to V = J(pA) . U ,  gives 

dV A - = -- tr MV 
ds 2 

with solution 

V(s) = V(so) exp [ - I>(.) tr M(o) d a  . 1 
Equation (B9) can be simplified if we consider N = M- which gives 

dN 
- = A . I ,  
ds 

where I is a 2 x 2 identity matrix. Equation (B12) may be replaced by a computa- 
tionally more convenient expression by using the variable W = (det N)”’ . V .  We 
note that 

tr N t r M = -  
det N 

and 

d(det N) -- - A tr N. 
ds 
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With these expressions we see that (B11) gives 

dW - = 0, 
ds 

so that 

Point source 

We now assume that the source is a point source at s = 0, and that the medium is 
homogeneous in the vicinity of the source. We let 

Uo(w) = U(1, w) exp [-iwz(l)] (B 18) 

be the displacement at so = 1 m (but without the delay due to the 1 m separation 
from the source point). 

The source field is symmetric so that N(s,) = n(so) . I, and equation (B13) gives 

[det N(s)]'I2 = n(s) = n(so) + A(a) da. 0319) 6 
We have shown that J ( p A  det N)U, is constant. The first-order solution is then 

where A(s), N(s), and z(s) also are functions of w. 
With a point source at s = 1 m the displacement for s 2 1 m is given by 

where z(s) and n(s) are given by (see (B2) and (B19)) 

and 

since z(0) = n(0) = 0. 

(B21) 

(B22.a) 

(B22.b) 

Line source 
We consider a line source in the x,-direction. The previous derivation is no longer 
valid after (B12) where, in this case, M,, = M , ,  = 0 so that the matrix N = M-' 
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does not exist. With m(o) = M ,  l(a), and M , ,  = M , ,  = 0, (B9) now gives 

dm - + Am2 = 0. 
ds 

We let n(s) = m(s)-', and again n(s) is given by (B19). Equation (B11) now becomes 

dV A 
ds 2 
-- - - - m V  

from which we obtain that ,/n . V is constant. 
The first-order solution is now 

When we consider a line source at s = 0 with a displacement U,(w) at so = 1 m (of 
the same form as in (B18)), we obtain that the displacement for s 2 1 m is given by 

where n(s) and z(s) are given in (B22). 

Plane source 

For a plane source M(s,) = 0, and (B9) gives M(a) = 0. From (B12) we see that in 
this case V(s)  is constant, and the first-order solution is 

When we consider a plane source at so = 0 with displacement Uo(o)  we have for 
s 2 0  

where z(s) is given by (B22.a). 

APPENDIX C 

REFLECTION A N D  TRANSMISSION COEFFICIENTS F O R  VERTICALLY 
TRAVELING WAVES I N  VISCOELASTIC MEDIA 

We consider two viscoelastic half-spaces in welded contact at x3 = z = zk. The 
stress-strain relation (Al) gives 

033(x, t )  = (2 + 2P) * u 3 , 3 .  (C1) 
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When we Fourier-transform this equation and use the definition of the propagation 
velocity A ,  we obtain 

s 3 3  = M U 3 . 3  . (C2) 

Spherical waves 

We consider a vertically traveling wave of the form (see (B21)) 

where the plus sign is used for a downward traveling wave, and the minus sign is 
used for an upward traveling wave. This gives 

1 1 
s 3 3  = PAfiUT,, - ; n,3 - - 2 4  (AP) , , ]U3 .  

From (B22) we obtain 

1 
A 

z,, = & - 

and 

(C5.a) 

n., = & A ,  (C5.b) 

where the plus sign refers to a downward traveling wave and the minus sign refers to 
an upward traveling wave. 

We let the displacement be positive in the direction of the ray so that the 
reflected wave is - R  . U ,  and the transmitted wave is T * U ,  when we refer to the 
x3-coordinate system. The boundary conditions require that U ,  and S33 shall be 
continuous at the interface between the two media. This gives 

T = 1 - R  (C6) 

and 

where z k -  is just above the interface, and zk+ is just below the interface. 

terms may be dropped. This gives 
We assume that the change in (Ap), ,  across the interface is small, so that these 
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with 

G = p A  1 - 7 .  ( i t n )  

Cylindrical waves 

We now consider a vertically traveling wave of the form (B26) 

Equation (C2) then gives 

1 
(C11) 

The previous derivation may be repeated to give the transmission and reflection 
coefficients of the same form as in (C6) and (C8), but now with 

G = p A  1-- ( i f i n )  

Plane waves 
A vertically traveling plane wave is of the form (B28) 

which gives 

s,, = PA2[iwr,, - - 1 (AP).,]U3. 
2 4  

This gives the plane-wave transmission and reflection coefficients of the same form 
as in (C8) and (C9) but now with 

G = pA. (C 15) 

Frequency-independent reflection and transmission coeficients 
The reflection and transmission coefficients derived above are all functions of fre- 
quency, and it is computationally expensive to use them. We shall use the following 
expression for the complex velocity (see appendix D): 

1 
1 +- 

2Q 
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where Q is constant in each layer. The reflection coefficient is given by (C8), where 

G(z) = p A  1 - k 7 ( lc) 
with k = 1 for spherical waves, k = 0.5 for cylindrical waves, and k = 0 for plane 
waves. 

A computationally efficient approximation is obtained by using the function 

in (C8) and (C6). This gives the frequency-independent plane-wave reflection and 
transmission coefficients derived in Waters (1978, appendix 4A). 

A first-order Taylor expansion of (C8) gives 

R =  G O ( Z k + )  - + 2 G O ( z k + ) G O ( z k - )  

G O ( Z k + )  + C G O ( Z k + )  + G O ( Z k - ) 1 2  

We see that the approximation is valid if the change in Q across the interface is 
small, and if the waves are nearly plane (or if the change in complex velocity across 
the interface is small). The last term in (C17) is a near-field term (Berkhout 1982). 

APPENDIX D 

COMPLEX PROPAGATION VELOCITY 
The complex velocity A(s, w) is obtained from the complex bulk-modulus given in 
(A15.a). We use a bulk-modulus given by Kjartansson (1979), which gives a velocity 
of the form 

where the quality factor Q is defined by (Aki and Richards 1980, p. 183): 

1 I m ( A + 2 M )  
Q = - Re (A + 2M)’  
- 

and C,(z) is reference velocity measured at frequency 0,. Q is assumed to be inde- 
pendent of frequency and space coordinates. Equation (Dl) is valid when the condi- 
tions 
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(D3.a) 

-log - e 1 
nQ (3 (D3.b) 

are satisfied. This is the case for most applications. Equation (Dl) coincides with the 
velocity given by Aki and Richards (1980) which was calculated from laboratory 
measurements of creep-functions. Futtermann (1962) obtained the same relation by 
using the principle of causality. Laboratory and field measurements (Newman and 
Worthington 1982, Winkler and Nur 1982) indicate that the amplitudes of seismic 
waves should depend exponentially on frequency and traveltime. Furthermore, the 
product of the real part of the velocity A(z, w) and the quality factor Q should be 
approximately independent of frequency. With our solution of the equations of 
motion and choice of velocity--(l) and (Dl), respectively-these requirements are 
met. 

In the numerical calculations we assume that the reference velocity C,(z) is a 
linear function of depth: 

where g is a constant and C, is assumed to be known at the point zo.  
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